|
| number | math::log1p (numeric x) |
| | \(f(x) = \ln{\left(1+x\right)}\)
|
| |
| number | math::expm1 (numeric x) |
| | \(f(x) = e^x - 1\)
|
| |
| number | math::xlogx (numeric x) |
| | \(f(x) = x \ln{\left(x\right)}\)
|
| |
| number | math::xlogy (numeric x, numeric y) |
| | \(f(x, y) = x \ln{\left(y\right)}\)
|
| |
| number | math::xlog1py (numeric x, numeric y) |
| | \(f(x, y) = x \ln{\left(1 + y\right)}\)
|
| |
| number | math::xexpx (numeric x) |
| | \(f(x) = x e^x\)
|
| |
| number | math::xexpy (numeric x, numeric y) |
| | \(f(x, y) = x e^y\)
|
| |
| number | math::logistic (numeric x) |
| | Standard logistic function or expit function \(\mathcal{L}\).
|
| |
| number | math::logit (numeric x) |
| | Logit function or log-odds function. Inverse of the standard logistic function \(\sigma = \mathcal{L}^{-1}\).
|
| |
| number | math::logcosh (numeric x) |
| | \(f(x) = \ln{\left(\cosh{(x)}\right)}\)
|
| |
| number | math::log1psq (numeric x) |
| | \(f(x) = \ln{\left(1 + x^2\right)}\)
|
| |
| number | math::log1pexp (numeric x) |
| | \(f(x) = \ln{\left(1 + e^x\right)}\)
|
| |
| number | math::log1pmx (numeric x) |
| | \(f(x) = \ln{\left(1 + x\right)} - x\)
|
| |
| number | math::logmxp1 (numeric x) |
| | \(f(x) = \ln{\left(x\right)} -x + 1\)
|
| |
| number | math::log1mexp (numeric x) |
| | \(f(x) = \ln{\left(1 - e^x\right)}\)
|
| |
| number | math::log2mexp (numeric x) |
| | \(f(x) = \ln{\left(2 - e^x\right)}\)
|
| |
| number | math::cloglog (numeric x) |
| | Complementary log-log function.
|
| |
| number | math::cexpexp (numeric x) |
| | Complementary double exponential function.
|
| |