Awkl
Loading...
Searching...
No Matches
set Namespace Reference

Functions

auto _setFromArr (A, R)
 
auto new (x, R, sep)
 Create a new set A set is an array with keys of unique values of the original array, and empty values A drawback of this approach is that original values are coerced into strings, so number values could be merged with strings.
 
auto add (R, x, sep)
 Add elements to a set.
 
auto rm (R, x)
 Remove element of a set.
 
auto union (S1, S2, R)
 Union (∪)
 
auto inter (S1, S2, R)
 Intersection (∩)
 
auto diff (S1, S2, R)
 Difference (−)
 
auto symdiff (S1, S2, R)
 Symmetric difference (⊕)
 
auto eq (S1, S2)
 Equality (=)
 
auto ne (S1, S2)
 Inequality (≠)
 
auto subset (S1, S2)
 
auto ssubset (S1, S2)
 
auto superset (S1, S2)
 
auto ssuperset (S1, S2)
 
auto disjoint (S1, S2)
 Are disjoint (⊥)
 
auto inside (x, S)
 Is element of (∈)
 
auto contains (S, x)
 Contains (∋)
 
auto card (S)
 Cardinality.
 
auto pop (x)
 

Function Documentation

◆ _setFromArr()

auto set::_setFromArr ( A ,
R  )

◆ add()

auto set::add ( R ,
x ,
sep  )

Add elements to a set.

◆ card()

auto set::card ( S )

Cardinality.

◆ contains()

auto set::contains ( S ,
x  )

Contains (∋)

◆ diff()

auto set::diff ( S1 ,
S2 ,
R  )

Difference (−)

◆ disjoint()

auto set::disjoint ( S1 ,
S2  )

Are disjoint (⊥)

◆ eq()

auto set::eq ( S1 ,
S2  )

Equality (=)

◆ inside()

auto set::inside ( x ,
S  )

Is element of (∈)

◆ inter()

auto set::inter ( S1 ,
S2 ,
R  )

Intersection (∩)

◆ ne()

auto set::ne ( S1 ,
S2  )

Inequality (≠)

◆ new()

auto set::new ( x ,
R ,
sep  )

Create a new set A set is an array with keys of unique values of the original array, and empty values A drawback of this approach is that original values are coerced into strings, so number values could be merged with strings.

◆ pop()

auto set::pop ( x )

◆ rm()

auto set::rm ( R ,
x  )

Remove element of a set.

◆ ssubset()

auto set::ssubset ( S1 ,
S2  )

◆ ssuperset()

auto set::ssuperset ( S1 ,
S2  )

◆ subset()

auto set::subset ( S1 ,
S2  )

◆ superset()

auto set::superset ( S1 ,
S2  )

◆ symdiff()

auto set::symdiff ( S1 ,
S2 ,
R  )

Symmetric difference (⊕)

◆ union()

auto set::union ( S1 ,
S2 ,
R  )

Union (∪)