|
Awkl
|
Functions | |
| auto | _setFromArr (A, R) |
| auto | new (x, R, sep) |
| Create a new set A set is an array with keys of unique values of the original array, and empty values A drawback of this approach is that original values are coerced into strings, so number values could be merged with strings. | |
| auto | add (R, x, sep) |
| Add elements to a set. | |
| auto | rm (R, x) |
| Remove element of a set. | |
| auto | union (S1, S2, R) |
| Union (∪) | |
| auto | inter (S1, S2, R) |
| Intersection (∩) | |
| auto | diff (S1, S2, R) |
| Difference (−) | |
| auto | symdiff (S1, S2, R) |
| Symmetric difference (⊕) | |
| auto | eq (S1, S2) |
| Equality (=) | |
| auto | ne (S1, S2) |
| Inequality (≠) | |
| auto | subset (S1, S2) |
| auto | ssubset (S1, S2) |
| auto | superset (S1, S2) |
| auto | ssuperset (S1, S2) |
| auto | disjoint (S1, S2) |
| Are disjoint (⊥) | |
| auto | inside (x, S) |
| Is element of (∈) | |
| auto | contains (S, x) |
| Contains (∋) | |
| auto | card (S) |
| Cardinality. | |
| auto | pop (x) |
| auto set::_setFromArr | ( | A | , |
| R | ) |
| auto set::add | ( | R | , |
| x | , | ||
| sep | ) |
Add elements to a set.
| auto set::card | ( | S | ) |
Cardinality.
| auto set::contains | ( | S | , |
| x | ) |
Contains (∋)
| auto set::diff | ( | S1 | , |
| S2 | , | ||
| R | ) |
Difference (−)
| auto set::disjoint | ( | S1 | , |
| S2 | ) |
Are disjoint (⊥)
| auto set::eq | ( | S1 | , |
| S2 | ) |
Equality (=)
| auto set::inside | ( | x | , |
| S | ) |
Is element of (∈)
| auto set::inter | ( | S1 | , |
| S2 | , | ||
| R | ) |
Intersection (∩)
| auto set::ne | ( | S1 | , |
| S2 | ) |
Inequality (≠)
| auto set::new | ( | x | , |
| R | , | ||
| sep | ) |
Create a new set A set is an array with keys of unique values of the original array, and empty values A drawback of this approach is that original values are coerced into strings, so number values could be merged with strings.
| auto set::pop | ( | x | ) |
| auto set::rm | ( | R | , |
| x | ) |
Remove element of a set.
| auto set::ssubset | ( | S1 | , |
| S2 | ) |
| auto set::ssuperset | ( | S1 | , |
| S2 | ) |
| auto set::subset | ( | S1 | , |
| S2 | ) |
| auto set::superset | ( | S1 | , |
| S2 | ) |
| auto set::symdiff | ( | S1 | , |
| S2 | , | ||
| R | ) |
Symmetric difference (⊕)
| auto set::union | ( | S1 | , |
| S2 | , | ||
| R | ) |
Union (∪)